

***Ocimum sanctum - Denovo Whole Genome Sequencing***



**Genotypic Project ID:**

**SO\_2054**

For,  
**Dr. Vikrant Gupta,**  
Central Institute of Medicinal and Aromatic Plants,  
Lucknow, India.

**Genotypic Technology [P] Ltd.,**  
**#2/13, Balaji Complex, 80 feet road, R.M.V. 2nd Stage, Bangalore-560094, INDIA**  
**Phone: +91 80 40538202/ 8213; Fax: +91 80 40538222**  
**Website: [www.genotypic.co.in](http://www.genotypic.co.in), E-mail: [ngs.analysis@genotypic.co.in](mailto:ngs.analysis@genotypic.co.in)**

## Table of Contents

|                                                                        |    |
|------------------------------------------------------------------------|----|
| Module 1: Objective of the project.....                                | 3  |
| 1.1: Sample.....                                                       | 3  |
| 1.2: Sequencing platforms.....                                         | 3  |
| 1.3: Bioinformatics Data analysis tools .....                          | 3  |
| Module 2: Paired End Sequencing Using Illumina Chemistry.....          | 3  |
| 2.1: Methodology.....                                                  | 3  |
| 2.2: Nanodrop values of prepared library.....                          | 5  |
| Module 3: Single-end Sequencing Using 454 GS FLX.....                  | 6  |
| 3.1: Materials.....                                                    | 6  |
| 3.2: Methods.....                                                      | 6  |
| Module 4: Raw data QC.....                                             | 7  |
| 4.1: GC content table of sequenced raw data.....                       | 7  |
| 4.2: ATGC Composition of Illumina HiSeq2000 data .....                 | 7  |
| 4.3 Read length Distribution of 454 GS FLX data.....                   | 8  |
| 4.4 Estimated coverage for each of the libraries.....                  | 8  |
| Module 5: De-novo assembly of sequenced genome data:.....              | 8  |
| 5.1 Assembly statistics of contigs and scaffolds based on length:..... | 8  |
| 5.2 Assessment of assembly quality. ....                               | 10 |
| 5.3 Evidence of genes on scaffolds.....                                | 10 |
| Module 6: Gene prediction and Annotation.....                          | 10 |
| Module 7: Simple sequence repeat prediction (microsatellites).....     | 11 |
| Module 8: References.....                                              | 11 |

## Bioinformatics Data Analysis

### Module 1: Objective of the project

De-novo whole genome sequencing and assembly of *ocimum sanctum*.

#### 1.1: Sample

Extracted genomic DNA from plant sample.

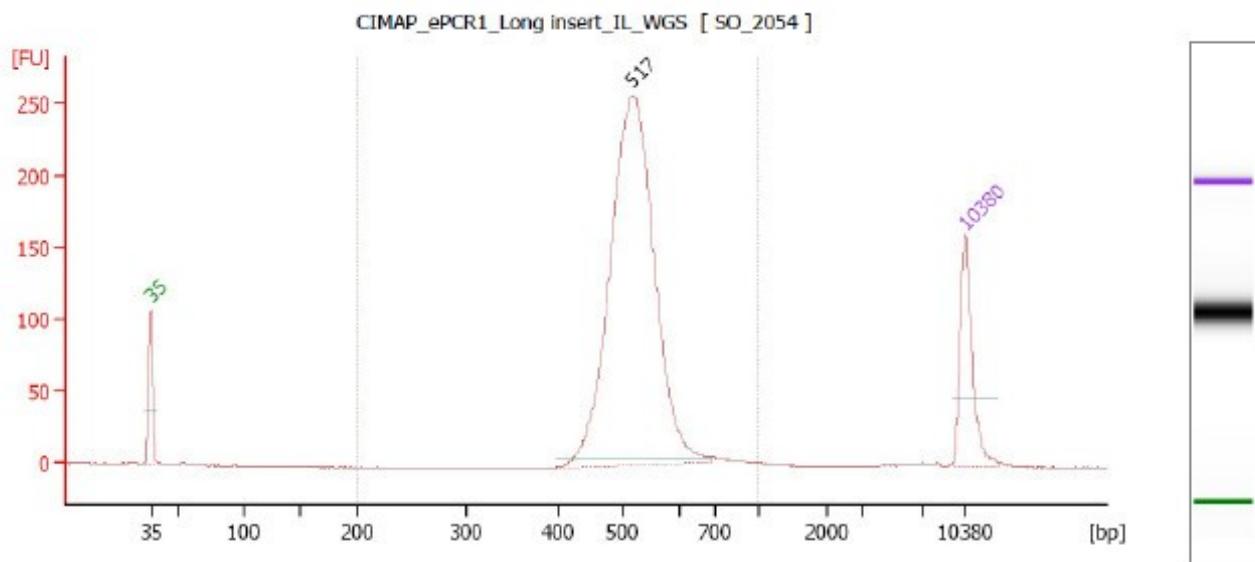
#### 1.2: Sequencing platforms

Illumina HiSeq2000: 2 libraries and 454 GS FLX: 1 library.

#### 1.3: Bioinformatics Data analysis tools

Edena v3.1, SSPACE v2.0, Misa v1.0, BLAT, Newbler

### Module 2: Paired End Sequencing Using Illumina Chemistry


Standard fragment library represents a collection of regions of 300-500 bp insert length obtained from randomly fragmented genomic DNA. Individual single-stranded inserts function as template molecules during sequencing. Two ends of such inserts are sequenced for a length of 100 nucleotide each in a 100 PE sequencing run. Illumina chemistry detects bases using a sequencing by synthesis approach, where a DNA polymerase inserts fluorescent-tagged bases corresponding to the template molecules. This process is carried out in a massively parallel manner to enable the sequencing of millions of insert molecules simultaneously.

#### 2.1: Methodology

~2 microgram of genomic DNA was made up to 50ul with nuclease free water (Ambion) and sonicated using covaris to obtain desired fragment length ranging between 150 to 600 bp. The resulting fragmented DNA was cleaned up using Agencourt Ampure XP SPRI beads (Beckman Coulter). The size distribution was checked by running an aliquot of the sample on Agilent High Sensitivity Bioanalyzer Chip.

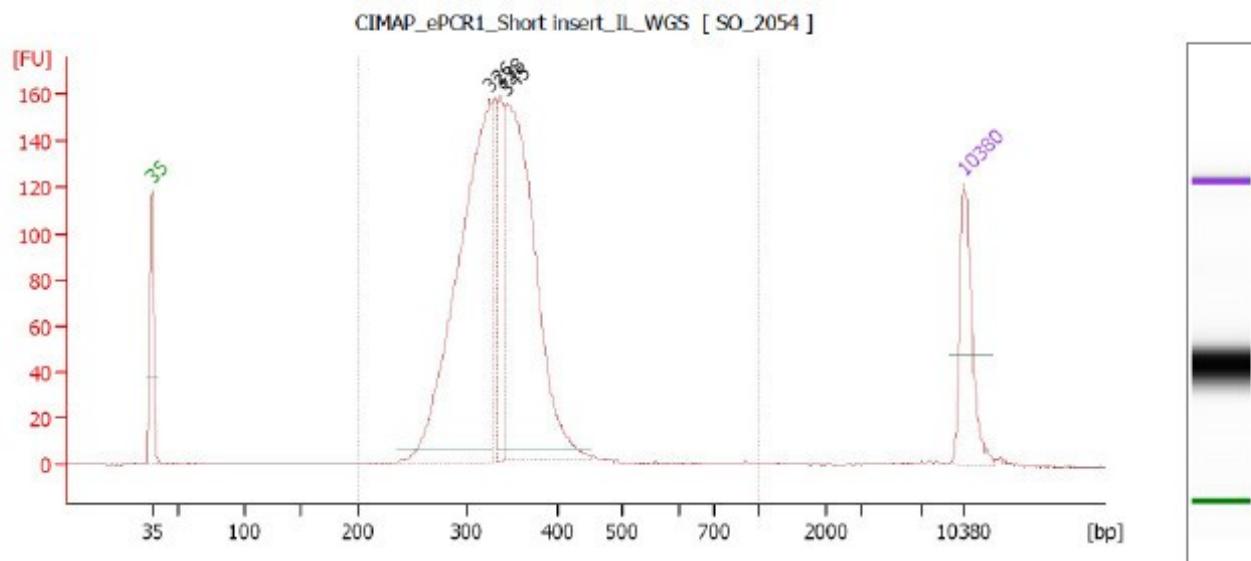
Subsequently libraries for whole genome sequencing were constructed according to the TruSeq DNA library protocol outlined in "TruSeq DNA Sample preparation guide" (Part # 15005180; Rev. A ;Nov 2010). DNA was subjected to a series of enzymatic reactions that repair frayed ends, phosphorylate the fragments, and add a single nucleotide A overhang and ligate adaptors (Illumina's TruSeq DNA sample preparation kit). Sample cleanup was done using Ampure SPRI beads. After ligation, ~500 - 600 bp for long insert, and 300-400bp for short insert were size selected on a 2% agarose gel and cleaned using MinElute column (QIAGEN). PCR amplification was done and cleaned up using Ampure SPRI beads. The prepared libraries were quantified using Nanodrop and validated for quality by running an aliquot on High Sensitivity Bioanalyzer Chip (Agilent). (Refer Figure for Bioanalyzer profiles of amplified product ePCR1)

**Figure 1. Bioanalyzer profile of amplified product (ePCR1) - Long Insert : (Avg. Insert Length is 524bp)**



**Overall Results for sample 9 : CIMAP ePCR1 Long insert IL WGS**

Number of peaks found: 1 Corr. Area 1: 1,458.1  
Noise: 0.2


**Peak table for sample 9 : CIMAP ePCR1 Long insert IL WGS**

| Peak | Size [bp] | Conc. [pg/μl] | Molarity [pmol/l] | Observations |
|------|-----------|---------------|-------------------|--------------|
| 1    | 35        | 125.00        | 5,411.3           | Lower Marker |
| 2    | 517       | 840.94        | 2,462.2           |              |
| 3    | 10,380    | 75.00         | 10.9              | Upper Marker |

**Region table for sample 9 : CIMAP ePCR1 Long insert IL WGS**

| From [bp] | To [bp] | Corr. Area | % of Total | Average Size [bp] | Size distribution in CV [%] | Conc. [pg/μl] | Molarity [pmol/l] | Color |
|-----------|---------|------------|------------|-------------------|-----------------------------|---------------|-------------------|-------|
| 200       | 1,000   | 1,458.1    | 98         | 524               | 9.9                         | 848.35        | 2,475.0           | ■     |

**Figure 2. Bioanalyzer profile of amplified product (ePCR1) - Short Insert : (Avg. Insert Length is 340bp)**



**Overall Results for sample 10 : CIMAP\_ePCR1\_Short insert IL\_WGS**

Number of peaks found: 3 Corr. Area 1: 1,774.9  
Noise: 0.2

**Peak table for sample 10 : CIMAP\_ePCR1\_Short insert IL\_WGS**

| Peak | Size [bp] | Conc. [pg/µl] | Molarity [pmol/l] | Observations |
|------|-----------|---------------|-------------------|--------------|
| 1    | 35        | 125.00        | 5,411.3           | Lower Marker |
| 2    | 326       | 643.18        | 2,985.8           |              |
| 3    | 338       | 108.97        | 488.3             |              |
| 4    | 345       | 562.87        | 2,473.1           |              |
| 5    | 10,380    | 75.00         | 10.9              | Upper Marker |

**Region table for sample 10 : CIMAP\_ePCR1\_Short insert IL\_WGS**

| From [bp] | To [bp] | Corr. Area | % of Total | Average Size [bp] | Size distribution in CV [%] | Conc. [pg/µl] | Molarity [pmol/l] | Color |
|-----------|---------|------------|------------|-------------------|-----------------------------|---------------|-------------------|-------|
| 200       | 1,000   | 1,774.9    | 97         | 340               | 17.5                        | 1,482.96      | 6,763.4           |       |

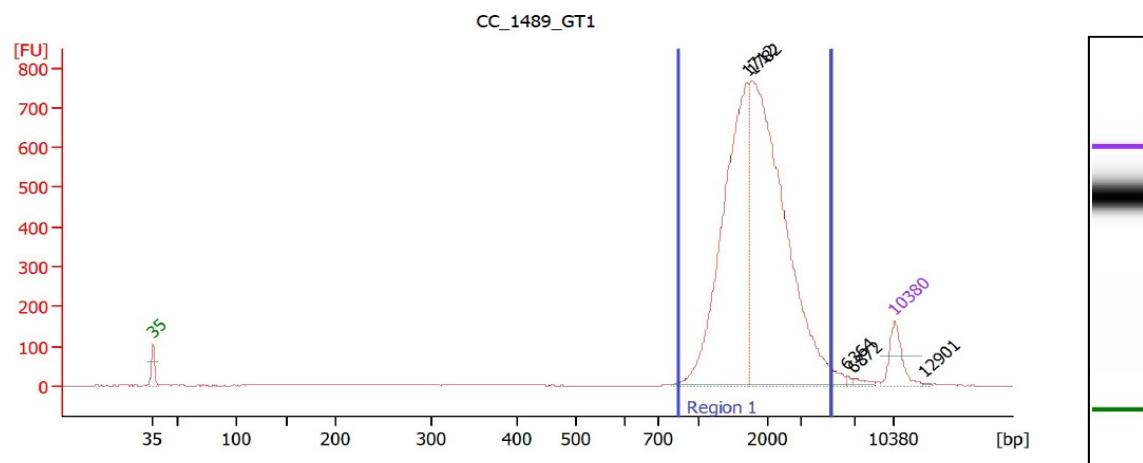
## 2.2: Nanodrop values of prepared library

| # | Sample ID                               | Nucleic Acid Conc. | Unit  | 260/280 | 260/230 | Yield(n g) | NEXT flex Barcode |
|---|-----------------------------------------|--------------------|-------|---------|---------|------------|-------------------|
| 1 | SO_2054_CIMAP_ePCR1_Long insert IL_WGS  | 17                 | ng/µl | 1.9     | 1.09    | 340        | 38                |
| 2 | SO_2054_CIMAP_ePCR1_Short insert IL_WGS | 28.4               | ng/µl | 1.94    | 1.01    | 568        | 39                |

**Comments:** The library shows a peak at the range of 300-400bp for short insert library and 500-600bp for long insert library. The effective sequencing insert size is 180-280bp for short insert and 380-480bp for long insert; the inserts are flanked by adaptors whose combined size 120 bp. The libraries are suitable for 100PE sequencing on Illumina.

Once sequencing was completed, the raw data was extracted from the server using the proprietary Illumina pipeline software to obtain FASTQ files.

## Module 3: Single-end Sequencing Using 454 GS FLX


### 3.1: Materials

1. GS FLX Titanium Rapid Library Preparation Kit (Roche, #05 608 228 001)
2. Agencourt AMPURE XP beads (Beckman Coulter, #A63881)
3. MinElute PCR purification kit (QIAGEN, #)
4. High Sensitivity Bioanalyzer Chips (Agilent, #5067-4626)

### 3.2: Methods

Library for sequencing was constructed according to the Roche Rapid Library Preparation Method Manual (GS FLX+ Series - XL+, May 2011). Briefly, ~1 microgram of genomic DNA was made up to 100  $\mu$ l with TE buffer and fragmented using a nebulizer. The resulting fragmented DNA was cleaned up using QIAGEN Minelute PCR purification kit. Subsequently, DNA was subjected to a series of enzymatic reactions that repair frayed ends, and ligates adaptors. After ligation, small fragments were removed using Agencourt Ampure SPRI beads. The prepared library was validated for quality by running an aliquot on High Sensitivity Bioanalyzer Chip (Agilent). (Refer Figure 3 for Bioanalyzer profiles of amplified product ePCR1)

**Figure 3: Bioanalyzer profile of amplified product (ePCR1)**



**Overall Results for sample 1 : CC\_1489\_GT1**

Number of peaks found: 5 Corr. Area 1: 5,157.4  
Noise: 0.5

**Peak table for sample 1 : CC\_1489\_GT1**

| Peak | Conc. [pg/ $\mu$ l] | Size [bp] | Molarity [pmol/l] | Observations |
|------|---------------------|-----------|-------------------|--------------|
| 1    | 125.00              | 35        | 5,411.3           | Lower Marker |
| 2    | 864.34              | 1,712     | 765.1             |              |
| 3    | 1,197.79            | 1,782     | 1,018.6           |              |
| 4    | 5.33                | 6,364     | 1.3               |              |
| 5    | 11.01               | 6,872     | 2.4               |              |
| 6    | 75.00               | 10,380    | 10.9              | Upper Marker |
| 7    | 0.00                | 12,901    | 0.0               |              |

**Region table for sample 1 : CC\_1489\_GT1**

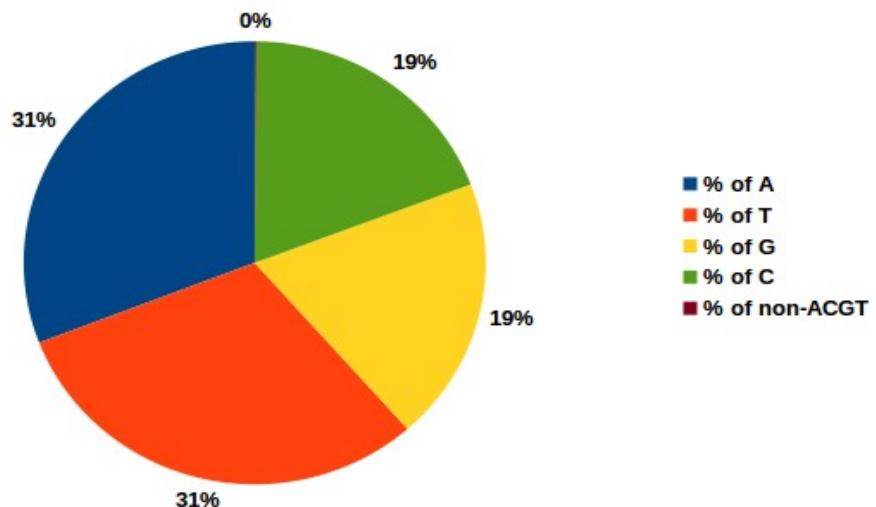
| From [bp] | To [bp] | Corr. Area | % of Total | Average Size [bp] | Size distribution in CV [%] | Conc. [pg/ $\mu$ l] | Molarity [pmol/l] | Color |
|-----------|---------|------------|------------|-------------------|-----------------------------|---------------------|-------------------|-------|
| 853       | 5,216   | 5,157.4    | 95         | 1,964             | 33.4                        | 2,036.34            | 1,695.8           | Blue  |

The library shows a peak at the range of 1.4 – 1.8 kb. The library is suitable for sequencing on 454 platform.

## Module 4: Raw data QC

The Illumina HiSeq2000 paired end raw reads and 454 single-end reads were quality checked using Genotypic Pvt. Ltd., proprietary tool SeqQC<sup>1</sup>.

| Platform           | Type of reads          | Total number of raw reads         |
|--------------------|------------------------|-----------------------------------|
| Illumina HiSeq2000 | Paired end (101bp max) | 224617107 pairs (45.37Gb of data) |
| 454                | Single End             | 643134(320.2Mb of data)           |


**Total Data Sequenced = 45.69Gb** (Illumina HiSeq2000 + 454)

### 4.1: GC content table of sequenced raw data

The GC content for Illumina as well as 454 reads is as follow

| Sequencing technology | GC %  |
|-----------------------|-------|
| Illumina HiSeq2000    | 38.37 |
| 454                   | 37.09 |

### 4.2: ATGC Composition of Illumina HiSeq2000 data



| Description | Percentage |
|-------------|------------|
| % of A      | 30.86      |
| % of T      | 30.64      |
| % of G      | 19.25      |

|               |       |
|---------------|-------|
| % of C        | 19.12 |
| % of non-ACGT | 0.10  |

Both of the Illumina libraries (short insert and long insert) have uniform read length of 101.

#### 4.3 Read length Distribution of 454 GS FLX data

The 454 reads having varying read length ranging from, 40 to 999, i.e. 40 being the minimum read length and 999 as maximum read length. It has total number of 643134 reads.

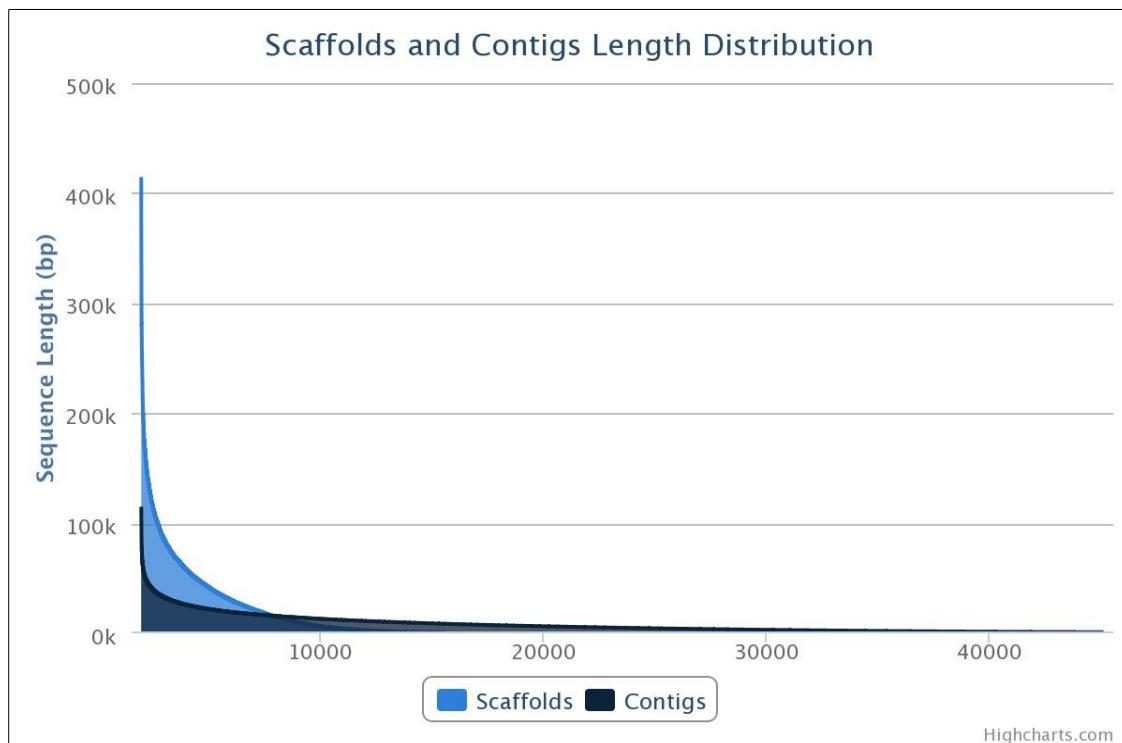
Below is the read length distribution chart for 454 reads:

| Range      | Number of reads | Percentage of total reads |
|------------|-----------------|---------------------------|
| 800-999    | 64810           | 10.08                     |
| 600-799    | 210235          | 32.69                     |
| 400-599    | 137998          | 21.46                     |
| 200-399    | 107985          | 16.79                     |
| 100-199    | 73890           | 11.49                     |
| 99 or less | 48216           | 7.5                       |

#### 4.4 Estimated coverage for each of the libraries

| Library name                 | total bases | coverage( assuming 450Mb genome) |
|------------------------------|-------------|----------------------------------|
| SO_2054_CIMAP_Long_insert_7  | 6284016990  | 13.96x                           |
| SO_2054_CIMAP_Long_insert    | 1932547736  | 4.29x                            |
| SO_2054_CIMAP_Short_insert_4 | 29717821658 | 66.03x                           |
| SO_2054_CIMAP_Short_insert   | 7438269230  | 16.52x                           |

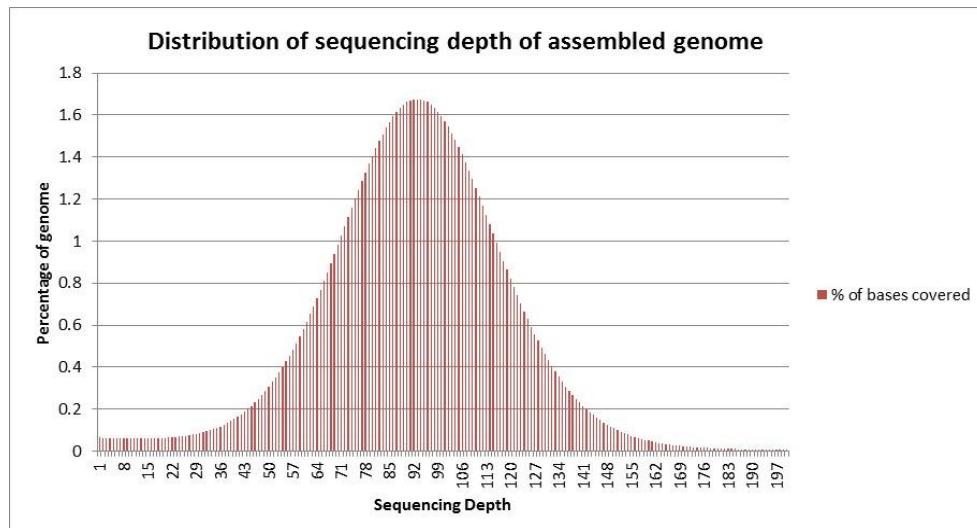
#### Module 5: De-novo assembly of sequenced genome data:


De-novo assembly of Illumina HiSeq2000 data was performed using Edena v3.1. Illumina paired-end data along with 454 GS FLX single end data were used for contig merging as a result of which scaffolds were generated. This scaffolding process was performed using the software SSPACE-2.03<sup>3</sup>.

## 5.1 Assembly statistics of contigs and scaffolds based on length:

| Description                         | Contigs   | Scaffolds |
|-------------------------------------|-----------|-----------|
| Contigs Generated                   | 107785    | 22776     |
| Maximum Contig Length               | 115044    | 414711    |
| Minimum Contig Length               | 147       | 200       |
| Average Contig Length               | 3454      | 16984     |
| Total Contigs Length                | 372395755 | 386828951 |
| Total Number of Non-ATGC Characters | 0         | 17898452  |
| Percentage of Non-ATGC Characters   | 0         | 4.627     |
| Contigs $\geq$ 1 Kb                 | 43174     | 14791     |
| Contigs $\geq$ 10 Kb                | 11594     | 7544      |
| N50 value                           | 12769     | 61854     |
| N90 value                           | 2071      | 12742     |

### Comments on Assembly Statistics :


1. With the help of two Illumina library data (short insert and long insert) the assembly showed significant improvement in respect of n50.
2. The draft genome (scaffolds) resulted 22776 sequences which gives a total genome length of 386Mb.



The graph above shows the increase in sequence length and significant decrease in number of gaps as a result of scaffolding.

## 5.2 Assessment of assembly quality.

Alignment of the raw data to the scaffolds have been carried out to calculate the sequencing depth of assembled genome. The graph below shows base wise read depth of scaffolds.



## 5.3 Evidence of genes on scaffolds

All of the publicly available mRNA, CDS and ESTs of Ocimum sanctum and Ocimum tenuiflorum were downloaded from NCBI. These were clustered using cd-hit-est to obtain 94 unigenes. These unigenes were aligned against scaffolds using BLAT. Query coverage cutoff 30% was applied. 76 out of 94 unigenes have found hits with the assembled scaffolds.

## Module 6: Gene prediction and Annotation

Genes were predicted using Augustus from these scaffolds. Often it is the most accurate *ab initio* program. The predicted proteins were then mapped (BLASTP) with Uniprot all viridiplantae clade protein sequences. Blast hits were filtered with minimum 30% subject coverage and 30% percent identity criteria. Top hit from each of the query is considered further in this study.

| Predicted gene annotation summary  | Number |
|------------------------------------|--------|
| Total genes                        | 85723  |
| Total Annotated genes with UNIPROT | 53480  |
| Total Unannotated genes            | 32243  |

## Module 7: Simple sequence repeat prediction (microsatellites)

Scaffolds were subjected to evaluate Simple Sequence Repeats

| Description                           | Particulars |
|---------------------------------------|-------------|
| Total number of scaffolds examined    | 22776       |
| Total size of examined sequences (Mb) | 386.8Mb     |
| Total number of identified SSRs       | 133236      |
| Number of SSR containing scaffolds    | 11255       |
| Number of SSRs with 1 unit            | 76064       |
| Number of SSRs with 2 units           | 32293       |
| Number of SSRs with 3 units           | 10939       |
| Number of SSRs with 4 units           | 1285        |
| Number of SSRs with 5 units           | 336         |
| Number of SSRs with 6 units           | 434         |
| Number of complex SSRs                | 11885       |

## Module 8: References

1. SeqQC: Raja Mugasimangalam, Krishna Mohan, Vasanthan Jayakumar, Mohamed Ashick M, Kapila G and Vidya Niranjan: Rapid Quality Control of Next Generation Sequence Data 2013 (manuscript under preparation).
2. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. D.R. Zerbino and E. Birney. Genome Research 18:821-829.
3. SSPACE: Scaffolding pre-assembled contigs using SSPACE, Marten Boetzer<sup>1,2</sup>, Christiaan V. Henkel<sup>3</sup>, Hans J. Jansen<sup>3</sup>, Derek Butler<sup>1</sup> and Walter Pirovano<sup>1</sup>.
4. Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph using the FM-index. Bioinformatics Oxford journals. Vol:26, Iss:12, p367-373.
5. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
6. Altschul, S; Gish, W; Miller, W; Myers, E; Lipman, D (October 1990). "Basic local alignment search tool". Journal of Molecular Biology 215 (3): 403-410. doi:10.1016/S0022-2836(05)80360-2. PMID 2231712.